
EXPLOITING CHECKM8 

WITH UNKNOWN 

SECUREROM FOR THE 

T2 CHIP

Alex Kovrizhnykh
@a1exdandy



whoami

• Reverse engineer and security researcher

• Flare-On 2018-2020 winner (#11, #3, #7 place respectively)

• Articles
• Edge Browser exploitation writeup

• Flare-On 2019 writeup

• checkm8 technical analysis

• checkm8 for Apple Lightning to VGA Adapter

2

http://flare-on.com/2018.html
http://flare-on.com/2019.html
https://flare-on.com/2020.html
https://habr.com/ru/company/dsec/blog/455594/
https://habr.com/ru/company/dsec/blog/469393/
https://habr.com/ru/company/dsec/blog/472762/
https://habr.com/ru/company/dsec/blog/485216/


CHECKM8 RELATED 
ARTICLES AND WORKS

3



Technical analysis of the 
checkm8 exploit

4

https://habr.com/ru/company/dsec/blog/472762/


checkm8 for Apple 
Lightning to VGA Adapter

• S5L8747 has executable SRAM by default

• Implement the code that searches for a standard 
string USB-descriptor and overwrites it with a 
SecureROM fragment

• Also works for S7002 - Apple Watch (1st gen.), 
dumped by @chiptunext

• Both SecureROMs have been added to the 
securerom.fun after this research

• PoC for S5L8747 and S7002

• Article (RU)

5

https://twitter.com/chiptunext
https://securerom.fun/
https://github.com/a1exdandy/ipwndfu-haywire
https://github.com/a1exdandy/checkwatch
https://habr.com/ru/company/dsec/blog/485216/


T7000, S8000, S8003

• Adapted heap feng shui as in other 
devices instead of task structure 
corruption for iPhone 6s (S8000)

• @moski_dev also checked this on 
T7000 and S8003

• PoC

• These processors were also added to 
King (C/C++ port of checkm8 by 
@Blips_and_Chitz) and were 
successfully launched on Windows

6

• T7000
• Apple TV (4th generation)

• HomePod

• iPad mini 4

• iPhone 6

• iPhone 6 Plus

• iPod touch (6th generation)

• S8000, S8003
• iPad (5th generation)

• iPhone 6s

• iPhone 6s Plus

• iPhone SE

https://twitter.com/moski_dev
https://gist.github.com/a1exdandy/ec3dc03883295ac9d15fe1a5926bc7cc
https://github.com/pgarba/King/
https://twitter.com/Blips_and_Chitz


S5L8940X, S5L8942X, S5L8945X

• Together with @nyan_satan, using his 
iPad mini 1 prototype device, the reason 
why checkm8 does not work with default 
PC USB-stack on A5 processors was 
found

• Using Arduino and MAX3421E-based USB 
Host Shield, we have successfully ported 
checkm8 to A5/A5X

• Our research and PoC

7

https://twitter.com/nyan_satan
https://github.com/a1exdandy/checkm8-a5


T2
• Was dumped by me on December 3, 2019

• Independently was dumped by T2 Development 
Team on March 6, 2020

• In both cases, brute-force of the T2 SecureROM 
offsets for checkm8 was used

• I will tell you my way

8

https://blog.t8012.dev/on-bridgeos-t2-research/


checkm8

• Affecting the iPhone 4S (A5 chip) through the iPhone X (A11 
chip)

• checkm8 exploits two vulnerabilities
• use-after-free of USB IO-buffer (ep0_data_phase_buffer pointer)

• memory leak of usb_device_io_request object

9



10



checkm8 stages (for iPhone 7 as 
example)

1. Heap feng shui

2. Allocation and deallocation of IO buffer without global state 
clearing (UAF triggering)

3. Rewriting usb_device_io_request on heap using UAF

4. Payload placement

5. Callback-chain execution

6. Shellcode execution

11



сheckm8 details

• To exploit the vulnerability, especially starting with the iPhone 7, 
you need to know the various offsets in SecureROM, which is 
why it is unclear how to develop an exploit without having 
SecureROM access

• What do you need to know to exploit?
• Starting with iPhone 7, the exploit uses a callback chain to disable the 

WXN bit and edit translation tables
• This is achieved by building a fake chain of usb_device_io_request using the 

"next" and "callback" fields

• You need to know the addresses of gadgets in SecureROM to build a callback 
chain

12



The Chicken-and-Egg Problem

• Possible solutions:
• Prototype devices (EVT, PVT, DVT, etc)

• More info about prototypes by @1nsane_dev

• Other vulnerabilities
• Maybe at a higher level

• Hardware ways

• ...

13

https://twitter.com/1nsane_dev/status/1217524821174771713
https://twitter.com/1nsane_dev


T2 case

14

iBoot-3332.0.0.1.23 iBoot-3401.0.0.1.16 iBoot-3865.0.0.4.6

securerom.fun

https://securerom.fun/


Plan

1. Achieve the ability to dump a small piece of SecureROM

2. Using this, dump the necessary SecureROM fragments

3. Port checkm8

• We need to find the minimum number of gadgets/functions, 
with which we can dump the SecureROM fragment

15



iPhone 7 example

• 9 code offsets

• 7 data offsets

16



First idea

• There is no ASLR in SecureROM, you can brute some address 
byte by byte

• In our case, you can brute the callback 
standard_device_request_cb as part of 
usb_device_io_request

17



usb_device_io_request object

struct usb_device_io_request

{

u_int32_t endpoint;

volatile u_int8_t *io_buffer;

int status;

u_int32_t io_length;

u_int32_t return_count;

void (*callback) (struct usb_device_io_request *io_request);

struct usb_device_io_request *next;

};

18



Call chain on abort

• synopsys_otg_abort_endpoint
• for each io_req in linked list
•usb_core_complete_endpoint_io(io_req)
• io_req->callback(io_req)
• free(io_req) <=== problem

19



Show me true oracle...

20

Device is still in DFU:
• Hit into a RET gadget with 

a frame shift by 0x20

Device not in DFU:
• Didn't hit the desired gadget or 

the exploit failed



Idea from ipwndfu_public
• We can shift the UAF pointer to a multiple of 0x40 before 

next DFU iteration so as not to corrupt the heap

21



Idea from ipwndfu_public
• We can shift the UAF pointer to a multiple of 0x40 before

next DFU iteration so as not to corrupt the heap

22



Call chain on abort

• synopsys_otg_abort_endpoint
• for each io_req in linked list
•usb_core_complete_endpoint_io(io_req)
• io_req->callback(io_req)
• free(io_req) <=== not a problem anymore

23



...I said true oracle...

24

Device is still in DFU:
• Some code was executed 

and control returned 
correctly (found RET, etc.)

Device not in DFU:
• Executed some bs or exploit 

failed



Improving the idea from ipwndfu_public
and my findings

• UAF pointer can be shifted multiple times in 0x40 increments

• We can overflow hs and fs conf. descriptors and achieve buffer 
overread

25



Improving the idea from ipwndfu_public
and my findings

1. UAF triggering

2. Memory leak of two USB requests

3. Write payload and overwrite hs conf. to achieve buffer 
overread

4. Read hs conf. and get the metadata of the next heap chunk

5. Overwrite metadata and fs conf.

6. Read fs conf. and get the metadata of the next heap chunk 
with USB request

7. Building a fake chain of 3 USB requests

26



27



28



29



30



31



32



33



34



...Perfection

35

Device is still in DFU, we can 
read fs conf.:
• If io_req is freed, then we 

hit RET
• If io_req is not freed, then 

we hit RET with a frame 
shift by 0x20

• You can get other 
interesting effects on the 
buffer

Device not in DFU:
• Executed some bs
• Exploit failed

Now we have a clear separation of 
these two cases



Using Oracle V3, we brute force 
standard_device_request_cb

36

crash

ret

ret

ret

…

ret

crash



The minimum set of gadgets for dumping

• usb_create_string_descriptor()
• Has some limitations, for example, you cannot dump a sequence of 

more than 0x80 consecutive non-zero bytes

• call-gadget – f(x) where we control f and x
• Used in original checkm8

• How to Catch 'Em All?

37



Analysis of known SecureROMs

38

ucsd

call
call

callcb
cb

cb

ucsd

call

cb

???

???

cb

ucsd
ucsd

???

???

cb - standard_device_request_cb()
ucsd - usb_create_string_descriptor()
call - call-gadget

The analysis showed:
1. The necessary gadgets/functions were present in all SecureROMs
2. The gadgets/functions order is the same in close versions
3. They were at approximately the same distance from each other in different firmware



39

iBoot-3332.0.0.1.23

• 0x100003E78 – call

• 0x10000AE80 – ucsd

• 0x10000BB5C – cb

iBoot-3865.0.0.4.6

• 0x10000A404 - call

• 0x10000D390 - cb

• 0x10000D544 - ucsd

iBoot-3401.0.0.1.16

• ???

• ???

• ???



ARMA - Advanced Return Map Analyzing

40

crash ldp x8, x9, [x0, #0x70]

crash lsl w2, w2, w10

crash mov x0, x8

crash blr x9

ret, w/o free cmp w0, #0

ret, w/o free csel w0, w0, w19, lt

ret, w/o free ldp x29, x30, [sp, #0x10]

crash ldp x20, x19, [sp], #0x20

ret ret

ret stp x20, x19, [sp, #-0x20]!

ret, w/o free stp x29, x30, [sp, #0x10]

ret, w/o free add x29, sp, #0x10



41

ret, w/o free add x29, sp, #0x10

ret, w/o free adrp x19, #0x80000000

ret, w/o free add x19, x19, #0x4f0

ret, w/o free ldrb w8, [x19, #2]

ret, w/o free tbnz w8, #0, #0x40 ; buf[0] = 0x01, buf[2] = 0x01

ret, w/o free movz w20, #0x200, lsl #16 ; buf[0] = 0x01, buf[2] = 0x01

crash movk w20, #0x3800

crash movz w0, #0x200, lsl #16

crash movk w0, #0x3800

crash bl func

crash strb w0, [x19]

crash orr w0, w20, #0x600

crash bl func

ret, w/o free strb w0, [x19, #1] ; buf[1] = 0x40, buf[2] = 0x01

ret, w/o free orr w8, wzr, #1 ; buf[2] = 0x01

ret, w/o free strb w8, [x19, #2] ; buf[2] = 0xf4

ret, w/o free ldp x29, x30, [sp, #0x10]

crash ldp x20, x19, [sp], #0x20

ret ret

ret stp x20, x19, [sp, #-0x20]!



usb_init_with_controller

42

ret, w/o free b #0x4c

crash bl usb_controller_register

crash adr x0, aAppleMobileDev ; "Apple Mobile Device (DFU Mode)"

crash nop

crash bl usb_core_init

reset cmn w0, #1

reset b.eq #0x44

reset bl usb_dfu_init

reset cmn w0, #1

reset b.eq #0x44

reset bl usb_core_start

ret, w/o free cmn w0, #1

ret, w/o free b.eq #0x44



43

infloop stp x20, x19, [sp, #-0x20]!

infloop stp x29, x30, [sp, #0x10]

infloop add x29, sp, #0x10

infloop mov x19, x0

infloop bl func0

infloop umull x20, w0, w19

ret, w/o free bl time

ret, w/o free mov x19, x0

loop:

ret, w/o free bl time

ret, w/o free sub x8, x0, x19

ret, w/o free cmp x8, x20

ret, w/o free b.ls loop

ret, w/o free ldp x29, x30, [sp, #0x10]

crash ldp x20, x19, [sp], #0x20

ret ret



Dumping

• Dump our SecureROM using the found:
• usb_create_string_descriptor()

• call-gadget from original checkm8

• Each time you try checking the address, you must manually enter the 
system into a special USB operating mode (DFU)

• Only "strings" can be read (up to the first null byte)
• It is so slow…

• Cannot read more than 127 bytes (non-zero) at a time
• There are only two such places in SecureROM and this is not critical

• But it works and allows us to get all addresses from the original checkm8

44



Results

• checkm8 has been fully ported to T2

• Full dump of SecureROM T2 was received

• Now we can explore T2 at a higher level

• All this without using prototype devices and other "cheats"

45



Conclusions

• Never give up! Even the impossible at first glance may turn out 
to be real upon closer examination

• Brute force is still working

• The described method can be useful in other cases

46



THANKS FOR 
ATTENTION

QUESTIONS?


